A Robust Knapsack Based Constrained Portfolio Optimization

نویسندگان

  • A. Makui Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
  • F. Vaezi Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
  • S. J. Sadjadi Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده مقاله:

Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted problem formulations do not yield in practical solutions. Therefore, it is necessary to apply some managerial decisions in order to make the results more practical. This paper presents a portfolio optimization based on an improved knapsack problem with the cardinality, floor and ceiling, budget, class, class limit and pre-assignment constraints for asset allocation. To handle the uncertainty associated with different parameters of the proposed model, we use robust optimization techniques. The model is also applied using some realistic data from US stock market. Genetic algorithm is also provided to solve the problem for some instances.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Portfolio Optimization

We propose a robust portfolio optimization approach based on quantile statistics. The proposed method is robust to extreme events in asset returns, and accommodates large portfolios under limited historical data. Specifically, we show that the risk of the estimated portfolio converges to the oracle optimal risk with parametric rate under weakly dependent asset returns. The theory does not rely ...

متن کامل

Robust portfolio optimization

It is widely recognized that when classical optimal strategies are used with parameters estimated from data, the resulting portfolio weights are remarkably volatile and unstable over time. The predominant explanation for this is the di¢ culty to estimate expected returns accurately. We propose to parameterize an n stock Black-Scholes model as an n factor Arbitrage Pricing Theory model where eac...

متن کامل

Relative Robust Portfolio Optimization

Considering mean-variance portfolio problems with uncertain model parameters, we contrast the classical absolute robust optimization approach with the relative robust approach based on a maximum regret function. Although the latter problems are NP-hard in general, we show that tractable inner and outer approximations exist in several cases that are of central interest in asset management. AMS s...

متن کامل

portfolio selection by robust optimization

this paper discusses the portfolio selection based on robust optimization. since the parameters values of the portfolio optimization problem such as price of the stock, dividends, returns, etc. of per share are unknown, variable and their distributions are uncertain because of the market and price volatility, therefore, there is a need for the development and application of methodologies for de...

متن کامل

A robust approach to the chance-constrained knapsack problem

Chance-constrained programming is a relevant model for many concrete problems. However, it is known to be very hard to tackle directly. In this paper, the chance-constrained knapsack problem (CKP) is addressed. Relying on the recent advances in robust optimization, a tractable combinatorial algorithm is proposed to solve CKP. It always provides feasible solutions for CKP. Moreover, for two spec...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 33  شماره 5

صفحات  841- 851

تاریخ انتشار 2020-05-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023